Senin, 04 Januari 2010

MATERI KULIAH MESIN LISTRIK DASAR PASCA MID SMT

A.MOTOR DC
PENDAHULUAN
Suatu mesin listrik berfungsi sebagai motor listrik apabila terjadi proses konversi energi listrik menjadi energi mekanik di dalamnya. Motor DC adalah motor yang memerlukan suplai tegangan searah pada kumparan jangkar dan kumparan medan untuk diubah menjadi energi mekanik. Berdasarkan karakteristiknya, motor arus searah ini mempunyai daerah pengaturan putaran yang luas dibandingkan dengan motor arus bolak-balik, sehingga sampai sekarang masih banyak digunakan pada pabrik-pabrik yang mesin produksinya memerlukan pengaturan putaran yang luas.
PRINSIP KERJA MOTOR DC
Pada motor DC, kumparan medan yang dialiri arus listrik akan menghasilkan medan magnet yang melingkupi kumparan jangkar dengan arah tertentu. Konverter energi baik energi listrik menjadi energi mekanik (motor) maupun sebaliknya dari energi mekanik menjadi energi listrik (generator) berlangsung melalui mediummedan magnet. Energi yang akan diubah dari suatu sistem ke sistem yang lain, sementara akan tersimpan pad medium medan magnet untuk kemudian dilepaskan menjadi energi system lainya. Dengan demikian, medan magnet disini selain berfungsi sebagi tempat penyimpanan energi juga sekaligus proses perubahan energi.
Motor DC merupakan motor yang banyak digunakan sebagai aktuatuor, baik dalam sistem kendali posisi maupun sistem kendali kecepatan. Kini motor DC memegang peranan penting dalam dunia perindustrian. Hal ini tampak dari banyaknya penggunaan motor DC pada devais-devais elektronik. Motor DC ini umumnya digunakan untuk pergerakan mekanis pada aplikasi-aplikasi tertentu, seperti gerakan memutar pada kertas atau drive CD.
Motor DC lebih cocok digunakan pada aplikasi yang menggunakan kecepatan tinggi dan torsi yang cukup besar. Oleh karena itu, motor ini biasanya digunakan pada bagian roda atau kaki sebagai penggerak dari sebuah robot. MTR-DSR01 yang tampak pada gambar 1 adalah sebuah motor yang dilengkapi dengan rotary encoder sehingga sistem dapat mengetahui kecepatan putar dari motor tersebut. Kecepatan putar motor dihitung berdasarkan jumlah putaran yang terjadi dalam satu menit atau RPM (Rotation Per Minute).

1.Gear
Untuk memperkuat torsi sebuah motor yang biasanya dinyatakan dalam kg-cm digunakan gear reduksi. Torsi diukur berdasarkan kemampuan sebuah tuas sepanjang1 cm untuk menggerakkan benda sebesar x kg.Semakin lambat putaran motor akibat penambahan gear maka semakin kuat torsi yang dihasilkan. Perubahan putaran ini berbanding terbalik dengan perbedaan diameter gear. Kecepatan motor akan turun dua kali lipat untuk gear yang dua kali lebih besar. Perlu diperhatikan bahwa gear yang digunakan harus memiliki ukuran gigi yang sama persis.


B.MOTOR STEPPER
Motor stepper adalah motor listrik yang dikendalikan dengan pulsa-pulsa digital, bukan dengan memberikan tegangan yang terus-menerus. Deretan pulsa diterjemahkan menjadi putaran shaft, dimana setiap putaran membutuhkan jumlah pulsa yang ditentukan. Satu pulsa menghasilkan satu kenaikan putaran atau step, yang merupakan bagian dari satu putaran penuh. Oleh karena itu, perhitungan jumlah pulsa dapat diterapkan untuk mendapatkan jumlah putaran yang diinginkan. Perhitungan pulsa secara otomatis menujukkan besarnya putaran yang telah dilakukan, tanpa memerlukan informasi balik(feedback).

Ketepatan kontrol gerak motor stepper terutama dipengaruhi oleh jumlah step tiap putaran; semakin banyak jumlah step, semakin tepat gerak yang dihasilkan. Untuk ketepatan yang lebih tinggi, beberapa driver motor stepper membagi step normal menjadi setengah step(half step) atau mikro step.

Bagian-bagian dari motor stepper yaitu tersusun atas rotor, stator, bearing, casing dan sumbu. Sumbu merupakan pegangan dari rotor dimana sumbu merupakan bagian tengah dari rotor, sehingga ketika rotor berputar sumbu ikut berputar. Stator memiliki dua bagian yaitu pelat inti dan lilitan. Plat inti dari motor stepper ini biasanya menyatu dengan casing. Casing motor stepper terbuat dari aluminium dan ini berfungsi sebagai dudukan bearing dan stator pemegangnya adalah baud sebanyak empat buah. Di dalam motor stapper memiliki dua buah bearing yaitu bearing bagian atas dan bearing bagian bawah.

Pada motor stepper umumnya tertulis spesifikasi Np (= pulsa / rotasi). Sedangkan kecepatan pulsa diekspresikan sebagai pps (= pulsa per second) dan kecepatan putar umumnya ditulis sebagai ω (= rotasi / menit atau rpm). Kecepatan putar motor stepper (rpm) dapat diekspersikan menggunakan kecepatan pulsa (pps) sebagai berikut.

Oleh karena 1 rotasi = 360 o, maka tingkat ketelitian motor stepper dapat diekspresikan dalam rumus sebagai berikut.


Pada dasarnya motor stepper dikelompokkan menjadi 3 jenis, yaitu:
a. Permanent Magnet (PM)
Sesuai namanya, Motor stepper berjenis PM memiliki rotor berupa magnet permanen. Biasanya memilki kecepatan rendah, alat dengan torsi rendah dan sudut langkah besar, bisa 45 atau 90 derajat

Gambar diatas merupakan magnet permanent sederhana 90 derajat motor magnet permanent dengan empat phase (AD).

b. Variable Reluctance (VR)
Motor stepper jenis ini memiliki bentuk rotor yang unik yaitu berbentuk silinder dan pada semua unitnya memiliki gerigi yang memiliki hubungan dengan kutub-kutub stator. Rotor pada magnet tipe ini tidak menggunakan magnet permanent. Stator terlilit oleh lilitan sehingga pada saat teraliri arus, stator akan menghasilkan kutub magnet. Jumlah gerigi pada rotor akan menentukan langkah atau step motor. Perbedaan motor stepper berjenis PM dengan VR yaitu motor berjenis VR memiliki torsi yang relatif lebih kecil dibanding dengan motor stepper berjenis PM. Hal lain yang dapat dilihat adalah sisa kemagnetan sangat kecil sehingga pada saat motor stepper tidak dialiri arus maka ketika diputar tidak ada torsi yang melawan. Sudut langkah motor stepper berjenis VR ini bervariasi yaitu sekitar sampai dengan 30o. Motor stepper berjenis VR ini memiliki torsi yang kecil. Sering ditemukan pada printer dan instrumen-instrumen pabrik yang ringan yang tidak membutuhkan torsi yang besar.

Seperti pada gambar diatas, motor mempunyai 3 pasang kutub stator (A, B, C) yang diset terpisah 15 derajat. Arus dialirkan ke kutub A melalui lilitan motor yang menyebabkan tarikan magnetic yang menyejajarkan gigi rotor kekutub A. jika kita memberi energi kekutub B maka akan menyebabkan rotor berputar 15 derajat sejajar kutub B. proses ini akan berlanjut kekutub C dan kembali kekutub A searah dengan jarum jam.

c. Permanent Magnet – Hybrid (PM-H)
Permanent magnet hybrid merupakan penyempurnaan motor stepper di mana motor stepper ini memiliki kecepatan 1000step/detik namun juga memiliki torsi yang cukup besar sehingga dapat dikatakan bahwa PM-H merupakan motor stepper kombinasi antara PM dan VR motor stepper. Motor hybrid mengkombinasikan karakteristik terbaik dari motor variable reluktansi dan motor magnet permanent. Motor ini dibangun dengan kutub stator yang banyak-gigi dan rotor magnet permanent. Motor hybrid standar mempunyai 200 gigi rotor dan berputar pada 1,8 derajat sudut step. Karena memperlihatkan torsi tinggi dan dinamis serta berputar dengan kecepatan yang tinggi maka motor ini digunkan pada aplikasi yang sangat luas.



Dilihat dari lilitannya motor stepper terbagi menjadi 2 jenis yaitu :

a. Motor Stepper Unipolar
Motor stepper unipolar terdiri dari dua lilitan yang memiliki center tap. Center tap dari masing masing lilitan ada yang berupa kabel terpisah ada juga yang sudah terhubung didalamnya sehingga center tap yang keluar hanya satu kabel. Untuk motor stepper yang center tapnya ada pada masing – masing lilitan kabel inputnya ada 6 kabel. Namun jika center tapnya sudah terhubung di dalam kabel inputannya hanya 5 kabel. Center tap dari motor stepper dapat dihubungkan ke pentanahan atau ada juga yang menghubungkannya ke +VCC hal ini sangat dipengaruhi oleh driver yang digunakan. Sebagai gambaran dapat dilihat konstruksi motor stepper unipolar pada gambar berikut:



b. Motor Stepper Bipolar
Motor stepper bipolar memiliki dua lilitan perbedaaan dari tipe unipolar adalah bahwa pada tipe bipolar lilitannya tidak memiliki center tap. Keunggulan tipe bipolar yaitu memiliki torsi yang lebih besar jika dibandingkan dengan tipe unipolar untuk ukuran yang sama. Pada motor stepper tipe ini hanya memiliki empat kabel masukan. Namun ntuk menggerakan motor stepper tipe ini lebih rumit jika dibandingkan dengan menggerakan motor stepper tipe unipolar. Sebagai gambaran dapat dilihat konstruksi motor stepper bipolar pada gambar berikut :



C.MOTOR SERVO
PENDAHULUAN
Berbeda dengan motor DC dan motor Stepper, motor servo adalah sebuah motor dengan sistem closed feedback di mana posisi dari motor akan diinformasikankembali ke rangkaian kontrol yang ada di dalam motor servo. Motor ini terdiri darisebuah motor, serangkaian gear, potensiometer dan rangkaian kontrol.Potensiometer berfungsi untuk menentukan batas sudut dari putaran servo.Sedangkan sudut dari sumbu motor servo diatur berdasarkan lebar pulsa yang dikirimmelalui kaki sinyal dari kabel motor. Tampak pada gambar dengan pulsa 1.5 mS padaperiode selebar 2 mS maka sudut dari sumbu motor akan berada pada posisi tengah.Semakin lebar pulsa OFF maka akan semakinbesargerakansumbu ke arah jarum jamdan semakin kecil pulsa OFF maka akan semakin besar gerakan sumbu ke arah yangberlawanan dengan jarum jam.
PENGERTIAN MOTOR SERVO
Motor servo adalah jenis motor yang digunakan sebagai penggerak pada sistem servo (servosystem) seperti pada penggerak pada kontrol posisi lengan robot. Motor servo secara struktur mesin listrik ada 2 macam : dc servo motor dan ac servo motor. [2] DC Servo motor mempunyai konstruksi yang sama dengan konstruksi motor dc. Dalam motor dc konvensional sikat dan cincin belah merupakan suatu kerugian. Karena ada gesekan antara sikat dan cincin maka akan terjadi rugi gesek, timbulnya percikan api dan terkikisnya sikat arang maupun cincin. Maka mulai dipikirkan Motor dc tanpa sikat atau disebut Brushless DC Motor. Brushless DC Motor dapat diwujudkan dengan menggunakan prinsip kerjamotor induksi 3 phasa (tanpa sikat dan cincin). Dengan menambahkan komponen permanent magnet, electronic inverter (yang menimbulkan medan putar) dan position control (umumnya menggunakan sensor effek Hall), maka akan didapatkan motor dc brushless. Jadi disini rangkaian inverter dan kontrol posisi berfungsi sebagai pengganti komutator mekanik (sikat & cincin belah) dalam membalik medan. Motor dc brushless ini mempunyai karateristik yang mendekati dc motor konvensional. [2] Untuk mengerti cara kerja Motor Servo DC Magnet Permanen haruslah dimengerti bagaimana prinsip kerja Motor DC Magnet Permanen, Motor DC tanpa sikat dan medan putar.


D.MOTOR DENGAN MAGNET PERMANEN


Motor dc magnet permanen adalah motor yang medan magnet utamanya berasal dari magnet permanen. Dan kumparan medan elektromagnetik digunakan untuk medan jangkar.[3] Gambar 1. memperlihatkan operasi motor dc magnet permanen. Arus mengalir melalui kumparan jangkar dari sumber tegangan dc, menyebabkan jangkar berfungsi sebagai magnet. Kutub pada kumparan jangkar akan ditarik oleh kutub medan utama dari polaritas yang berbeda, sehingga jangkar berputar. Pada Gambar 1a terlihat jangkar berputar searah dengan putaran jarum jam. Apabila kutub jangkar segaris dengan kutub medan, sikat-sikat ada pada celah di komutator sehingga tidak ada arus mengalir pada jangkar. Jadi, gaya tarik atau gaya tolak dari magnet akan berhenti, seperti tampak pada gambar 1b. Kemudian kelembaman membawa jangkar melewati titik netral. Komutator akan membalik arus jangkar ketika kutub yang tidak sama dari jangkar dan medan saling berhadapan satu sama lain, sehingga membalik polaritas medan jangkar. Kutub-kutub yang sama dari jangkar dan medan kemudian menjadi saling tolak menolak, sehingga jangkar berputar terus menerus seperti diperlihatkan pada gambar 1c. [3] Arah putaran dari motor dc magnet permanen ditentukan oleh arah arus yang mengalir pada jangkar. Pembalikan ujung-ujung jangkar tidak akan membalik arah putaran. Salah satu keistimewaan dari motor dc magnet permanen ini adalah kecepatannya dapat dikontrol dengan mudah. Kecepatan motor magnet permanen berbanding langsung dengan harga tegangan yang diberikan di jangkar. Semakin besar tegangan jangkar, semakin tinggi kecepatan motor. [3][1]

Gambar 1. Operasi Motor DC
Magnet Permanen










E.GENERATOR DC
Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah. Generator DC dibedakan menjadi beberapa jenis berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker), jenis generator DC yaitu:

1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

1. Konstruksi Generator DC


Pada umumnya generator DC dibuat dengan menggunakan magnet permanent dengan 4-kutub rotor, regulator tegangan digital, proteksi terhadap beban lebih, starter eksitasi, penyearah, bearing dan rumah generator atau casis, serta bagian rotor. Gambar 1 menunjukkan gambar potongan melintang konstruksi generator DC.


Gambar 1. Konstruksi Generator DC

Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor.

Bagian yang harus menjadi perhatian untuk perawatan secara rutin adalah sikat arang yang akan memendek dan harus diganti secara periodic / berkala. Komutator harus dibersihkan dari kotoran sisa sikat arang yang menempel dan serbuk arang yang mengisi celah-celah komutator, gunakan amplas halus untuk membersihkan noda bekas sikat arang.

2. Prinsip kerja Generator DC

Pembangkitan tegangan induksi oleh sebuah generator diperoleh melalui dua cara:

• dengan menggunakan cincin-seret, menghasilkan tegangan induksi bolak-balik.
• dengan menggunakan komutator, menghasilkan tegangan DC.
Jika rotor diputar dalam pengaruh medan magnet, maka akan terjadi perpotongan medan magnet oleh lilitan kawat pada rotor. Hal ini akan menimbulkan tegangan induksi. Tegangan induksi terbesar terjadi saat rotor menempati posisi seperti Gambar 2 (a) dan (c). Pada posisi ini terjadi perpotongan medan magnet secara maksimum oleh penghantar. Sedangkan posisi jangkar pada Gambar 2.(b), akan menghasilkan tegangan induksi nol. Hal ini karena tidak adanya perpotongan medan magnet dengan penghantar pada jangkar atau rotor. Daerah medan ini disebut daerah netral.


Gambar 3. Tegangan Rotor yang dihasilkan melalui cincin-seret dan komutator.

Jika ujung belitan rotor dihubungkan dengan slip-ring berupa dua cincin (disebut juga dengan cincin seret), seperti ditunjukkan Gambar 3.(1), maka dihasilkan listrik AC (arus bolak-balik) berbentuk sinusoidal. Bila ujung belitan rotor dihubungkan dengan komutator satu cincin Gambar 3.(2) dengan dua belahan, maka dihasilkan listrik DC dengan dua gelombang positip.

• Rotor dari generator DC akan menghasilkan tegangan induksi bolak-balik. Sebuah komutator berfungsi sebagai penyearah tegangan AC.

• Besarnya tegangan yang dihasilkan oleh sebuah generator DC, sebanding dengan banyaknya putaran dan besarnya arus eksitasi (arus penguat medan).

3. Jangkar Generator DC

Jangkar adalah tempat lilitan pada rotor yang berbentuk silinder beralur. Belitan tersebut merupakan tempat terbentuknya tegangan induksi. Pada umumnya jangkar terbuat dari bahan yang kuat mempunyai sifat feromagnetik dengan permiabilitas yang cukup besar.
Permiabilitas yang besar diperlukan agar lilitan jangkar terletak pada derah yang induksi magnetnya besar, sehingga tegangan induksi yang ditimbulkan juga besar. Belitan jangkar terdiri dari beberapa kumparan yang dipasang di dalam alur jangkar. Tiap-tiap kumparan terdiri dari lilitan kawat atau lilitan batang.
4. Reaksi Jangkar

Fluks magnet yang ditimbulkan oleh kutub-kutub utama dari sebuah generator saat tanpa beban disebut Fluks Medan Utama (Gambar 5). Fluks ini memotong lilitan jangkar sehingga timbul tegangan induksi.


Gambar 5. Medan Eksitasi Generator DC

Bila generator dibebani maka pada penghantar jangkar timbul arus jangkar. Arus jangkar ini menyebabkan timbulnya fluks pada penghantar jangkar tersebut dan biasa disebut FIuks Medan Jangkar (Gambar 6).


Gambar 6. Medan Jangkar dari Generator DC (a) dan Reaksi Jangkar (b).

Munculnya medan jangkar akan memperlemah medan utama yang terletak disebelah kiri kutub utara, dan akan memperkuat medan utama yang terletak di sebelah kanan kutub utara. Pengaruh adanya interaksi antara medan utama dan medan jangkar ini disebut reaksi jangkar. Reaksi jangkar ini mengakibatkan medan utama tidak tegak lurus pada garis netral n, tetapi bergeser sebesar sudut α. Dengan kata lain, garis netral akan bergeser. Pergeseran garis netral akan melemahkan tegangan nominal generator.
Untuk mengembalikan garis netral ke posisi awal, dipasangkan medan magnet bantu (interpole atau kutub bantu), seperti ditunjukkan pada Gambar 7.(a).


Gambar 7. Generator dengan Kutub Bantu (a) dan Generator Kutub Utama, Kutub Bantu, Belitan Kompensasi (b).

Lilitan magnet bantu berupa kutub magnet yang ukuran fisiknya lebih kecil dari kutub utama. Dengan bergesernya garis netral, maka sikat yang diletakkan pada permukaan komutator dan tepat terletak pada garis netral n juga akan bergeser. Jika sikat dipertahankan pada posisi semula (garis netral), maka akan timbul percikan bunga api, dan ini sangat berpotensi menimbulkan kebakaran atau bahaya lainnya. Oleh karena itu, sikat juga harus digeser sesuai dengan pergeseran garis netral. Bila sikat tidak digeser maka komutasi akan jelek, sebab sikat terhubung dengan penghantar yang mengandung tegangan. Reaksi jangkar ini dapat juga diatasi dengan kompensasi yang dipasangkan pada kaki kutub utama baik pada lilitan kutub utara maupun kutub selatan, seperti ditunjukkan pada gambar 7 (a) dan (b), generator dengan komutator dan lilitan kompensasinya.

Kini dalam rangkaian generator DC memiliki tiga lilitan magnet, yaitu:
• lilitan magnet utama
• lilitan magnet bantu (interpole)
• lilitan magnet kompensasi

5. Jenis-Jenis Generator DC

Seperti telah disebutkan diawal, bahwa generator DC berdasarkan dari rangkaian belitan magnet atau penguat eksitasinya terhadap jangkar (anker) dibagi menjadi 3 jenis, yaitu:
1. Generator penguat terpisah
2. Generator shunt
3. Generator kompon

• Generator Penguat Terpisah

Pada generator penguat terpisah, belitan eksitasi (penguat eksitasi) tidak terhubung menjadi satu dengan rotor. Terdapat dua jenis generator penguat terpisah, yaitu:
1. Penguat elektromagnetik (Gambar 8.a)
2. Magnet permanent / magnet tetap (Gambar 8.b)


Gambar 8. Generator Penguat Terpisah.

Energi listrik yang dihasilkan oleh penguat elektromagnet dapat diatur melalui pengaturan tegangan eksitasi. Pengaturan dapat dilakukan secara elektronik atau magnetik. Generator ini bekerja dengan catu daya DC dari luar yang dimasukkan melalui belitan F1-F2.

Penguat dengan magnet permanen menghasilkan tegangan output generator yang konstan dari terminal rotor A1-A2. Karakteristik tegangan V relatif konstan dan tegangan akan menurun sedikit ketika arus beban I dinaikkan mendekati harga nominalnya.

Karakteristik Generator Penguat Terpisah


Gambar 9. Karakteristik Generator Penguat Terpisah

Gambar 9 menunjukkan:
a. karakteristik generator penguat terpisah saat eksitasi penuh (Ie 100%) dan saat eksitasi setengah penuh (Ie 50%). Ie adalah arus eksitasi, I adalah arus beban.Tegangan output generator akan sedikit turun jika arus beban semakin besar.
b. Kerugian tegangan akibat reaksi jangkar.
c. Perurunan tegangan akibat resistansi jangkar dan reaksi jangkar, selanjutnya mengakibatkan turunnya pasokan arus penguat ke medan magnet, sehingga tegangan induksi menjadi kecil.

• Generator Shunt

Pada generator shunt, penguat eksitasi E1-E2 terhubung paralel dengan rotor (A1-A2). Tegangan awal generator diperoleh dari magnet sisa yang terdapat pada medan magnet
stator. Rotor berputar dalam medan magnet yang lemah, dihasilkan tegangan yang akan memperkuat medan magnet stator, sampai dicapai tegangan nominalnya. Pengaturan arus eksitasi yang melewati belitan shunt E1-E2 diatur oleh tahanan geser. Makin besar arus eksitasi shunt, makin besar medan penguat shunt yang dihasilkan, dan tegangan terminal meningkat sampai mencapai tegangan nominalnya. Diagram rangkaian generator shunt dapat dilihat pada Gambar 10.


Gambar 10. Diagram Rangkaian Generator Shunt

Jika generator shunt tidak mendapatkan arus eksitasi, maka sisa megnetisasi tidak akan ada, atau jika belitan eksitasi salah sambung atau jika arah putaran terbalik, atau rotor terhubung-singkat, maka tidak akan ada tegangan atau energi listrik yang dihasilkan oleh generator tersebut.

Karakteristik Generator Shunt


Gambar 11. Karakteristik Generator Shunt.

Generator shunt mempunyai karakteristik seperti ditunjukkan pada Gambar 11. Tegangan output akan turun lebih banyak untuk kenaikan arus beban yang sama, dibandingkan dengan tegangan output pada generator penguat terpisah.

Sebagai sumber tegangan, karakteristik dari generator penguat terpisah dan generator shunt tentu kurang baik, karena seharusnya sebuah generator mempunyai tegangan output yang konstan, namun hal ini dapat diperbaiki pada generator kompon.

• Generator Kompon

Generator kompon mempunyai dua penguat eksitasi pada inti kutub utama yang sama. Satu penguat eksitasi merupakan penguat shunt, dan lainnya merupakan penguat seri. Diagram rangkaian generator kompon ditunjukkan pada Gambar 12. Pengatur medan magnet (D1-D2) terletak di depan belitan shunt.


Gambar 12. Diagram Rangkaian Generator Kompon

Karakteristik Generator Kompon


Gambar 13. Karakteristik Generator Kompon

Gambar 13 menunjukkan karakteristik generator kompon. Tegangan output generator terlihat konstan dengan pertambahan arus beban, baik pada arus eksitasi penuh maupun eksitasi 50%. Hal ini disebabkan oleh adanya penguatan lilitan seri, yang cenderung naik tegangannya jika arus beban bertambah besar. Jadi ini merupakan kompensasi dari generator shunt, yang cenderung tegangannya akan turun jika arus bebannya naik.

Media transmisi

Media transmisi adalah media yang menghubungkan antara pengirim dan penerima informasi (data), karena jarak yang jauh, maka data terlebih dahulu diubah menjadi kode/isyarat, dan isyarat inilah yang akan dimanipulasi dengan berbagai macam cara untuk diubah kembali menjadi data.

Kegunaan media transmisi

Media transmisi digunakan pada beberapa peralatan elektronika untuk menghubungkan antara pengirim dan penerima supaya dapat melakukan pertukaran data. Beberapa alat elektronika, seperti telepon, komputer, televisi, dan radio membutuhkan media transmisi untuk dapat menerima data. Seperti pada pesawat telepon, media transmisi yang digunakan untuk menghubungkan dua buah telepon adalah kabel. Setiap peralatan elektronika memiliki media transmisi yang berbeda-beda dalam pengiriman datanya.


Karakteristik media transmisi ini bergantung pada :

   * Jenis alat elektronika.
   * Data yang digunakan oleh alat elektronika tersebut.
   * Tingkat keefektifan dalam pengiriman data.
   * Ukuran data yang dikirimkan.

Jenis media transmisi

Guided Transmission Media

Guided transmission media atau media transmisi terpandu merupakan jaringan yang menggunakan sistem kabel.

Twisted Pair Cable

Twisted pair cable atau kabel pasangan berpilin terdiri dari dua buah konduktor yang digabungkan dengan tujuan untuk mengurangi atau meniadakan interferensi lektromagnetik dari luar seperti radiasi elektromagnetik dari kabel Unshielded twisted-pair (UTP),dan crosstalk yang terjadi di antara kabel yang berdekatan. Ada dua macam Twisted Pair Cable, yaitu kabel STP dan UTP. Kabel STP (Shielded Twisted Pair) merupakan salah satu jenis kabel yang digunakan dalam jaringan komputer. Kabel ini berisi dua pasang kabel (empat kabel) yang setiap pasang dipilin. Kabel STP lebih tahan terhadap gangguan yang disebebkan posisi kabel yang tertekuk. Pada kabel STP attenuasi akan meningkat pada frekuensi tinggi sehingga menimbulkan crosstalk dan sinyal noise. Kabel UTP (Unshielded Twisted Pair) banyak digunakan dalam instalasi jaringan komputer. Kabel ini berisi empat pasang kabel yang tiap pasangnya dipilin (twisted). Kabel ini tidak dilengkapi dengan pelindung (unshilded). Kabel UTP mudah dipasang, ukurannya kecil, dan harganya lebih murah dibandingkan jenis media lainnya. Kabel UTP sangat rentan dengan efek interferensi elektris yang berasal dari media di sekelilingnya.

Coaxial Cable

Kabel koaksial adalah suatu jenis kabel yang menggunakan dua buah konduktor. Kabel ini banyak digunakan untuk mentransmisikan sinyal frekuensi tinggi mulai 300 kHz keatas. Karena kemampuannya dalam menyalurkan frekuensi tinggi tersebut, maka sistem transmisi dengan menggunakan kabel koaksial memiliki kapasitas kanal yang cukup besar. Ada beberapa jenis kabel koaksial, yaitu thick coaxial cable (mempunyai diameter besar) dan thin coaxial cable (mempunyai diameter lebih kecil). Keunggulan kabel koaksial adalah dapat digunakan untuk menyalurkan informasi sampai dengan 900 kanal telepon, dapat ditanam di dalam tanah sehingga biaya perawatan lebih rendah, karena menggunakan penutup isolasi maka kecil kemungkinan terjadi interferensi dengan sistem lain. Kelemahan kabel koaksial adalah mempunyai redaman yang relatif besar sehingga untuk hubungan jarak jauh harus dipasang repeater-repeater, jika kabel dipasang diatas tanah, rawan terhadap gangguan-gangguan fisik yang dapat berakibat putusnya hubungan.

Fiber Optic

Serat optik adalah saluran transmisi yang terbuat dari kaca atau plastik yang digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Berdasarkan mode transmisi yang digunakan serat optik terdiri atas Multimode Step Index, Multimode Graded Index, dan Singlemode Step Index. Keuntungan serat optik adalah lebih murah, bentuknya lebih ramping, kapasitas transmisi yang lebih besar, sedikit sinyal yang hilang, data diubah menjadi sinyal cahaya sehingga lebih cepat, tenaga yang dibutuhkan sedikit, dan tidak mudah terbakar. Kelemahan serat optik antara lain biaya yang mahal untuk peralatannya, memerlukan konversi data listrik ke cahaya dan sebaliknya yang rumit, memerlukan peralatan khusus dalam prosedur pemakaian dan pemasangannya, serta untuk perbaikan yang kompleks membutuhkan tenaga yang ahli di bidang ini. Selain merupakan keuntungan, sifatnya yang tidak menghantarkan listrik juga merupakan kelemahannya karena memerlukan alat pembangkit listrik eksternal.

Unguided Transmission Media

Unguided transmission media atau media transmisi tidak terpandu merupakan jaringan yang menggunakan sistem gelombang.

Gelombang mikro

Gelombang mikro (microwave) merupakan bentuk radio yang menggunakan frekuensi tinggi (dalam satuan gigahertz), yang meliputi kawasan UHF, SHF dan EHF. Gelombang mikro banyak digunakan pada sistem jaringan MAN, warnet dan penyedia layanan internet (ISP). Keuntungan menggunakan gelombang mikro adalah akuisisi antar menara tidak begitu dibutuhkan, dapat membawa jumlah data yang besar, biaya murah karena setiap tower antena tidak memerlukan lahan yang luas, frekuensi tinggi atau gelombang pendek karena hanya membutuhkan antena yang kecil. Kelemahan gelombang mikro adalah rentan terhadap cuaca seperti hujan dan mudah terpengaruh pesawat terbang yang melintas di atasnya.

Satelit

Satelit adalah media transmisi yang fungsi utamanya menerima sinyal dari stasiun bumi dan meneruskannya ke stasiun bumi lain. Satelit yang mengorbit pada ketinggian 36.000 km di atas bumi memiliki angular orbital velocity yang sama dengan orbital velocity bumi. Hal ini menyebabkan posisi satelit akan relatif stasioner terhadap bumi (geostationary), apabila satelit tersebut mengorbit di atas khatulistiwa. Pada prinsipnya, dengan menempatkan tiga buah satelit geostationary pada posisi yang tepat dapat menjangkau seluruh permukaan bumi. Keuntungan satelit adalah lebih murah dibandingkan dengan menggelar kabel antar benua, dapat menjangkau permukaan bumi yang luas, termasuk daerah terpencil dengan populasi rendah, meningkatnya trafik telekomunikasi antar benua membuat sistem satelit cukup menarik secara komersial. Kekurangannya adalah keterbatasan teknologi untuk penggunaan antena satelit dengan ukuran yang besar, biaya investasi dan asuransi satelit yang masih mahal, atmospheric losses yang besar untuk frekuensi di atas 30 GHz membatasi penggunaan frequency carrier.

Gelombang radio

Gelombang radio adalah media transmisi yang dapat digunakan untuk mengirimkan suara ataupun data. Kelebihan transmisi gelombang radio adalah dapat mengirimkan isyarat dengan posisi sembarang (tidak harus lurus) dan dimungkinkan dalam keadaan bergerak. Frekuensi yang digunakan antara 3 KHz sampai 300 GHz. Gelombang radio digunakan pada band VHF dan UHF : 30 MHz sampai 1 GHz termasuk radio FM dan UHF dan VHF televisi. Untuk komunikasi data digital digunakan packet radio.

Inframerah

Inframerah biasa digunakan untuk komunikasi jarak dekat, dengan kecepatan 4 Mbps. Dalam penggunaannya untuk pengendalian jarak jauh, misalnya remote control pada televisi serta alat elektronik lainnya. Keuntungan inframerah adalah kebal terhadap interferensi radio dan elekromagnetik, inframerah mudah dibuat dan murah, instalasi mudah, mudah dipindah-pindah, keamanan lebih tinggi daripada gelombang radio. Kelemahan inframerah adalah jarak terbatas, tidak dapat menembus dinding, harus ada lintasan lurus dari pengirim dan penerima, tidak dapat digunakan di luar ruangan karena akan terganggu oleh cahaya matahari.

Gangguan Transmisi Pada Jaringan

Dalam proses pengiriman data dari komputer satu dengan komputer lain atau lebih luas lagi dari jaringan suatu kota ke kota lain, kemungkinan terjadinya gangguan proses tersebut pasti ada. Pada sinyal analog, kualiatas data yang diterima tidak lengkap sehingga menurunkan kualitas sinyal. Sedangkan pada sinyal digital, kemungkinan terjadinya error artinya bitnar ‘1′ akan menjadi binary ‘0′ dan sebaliknya yang mengakibatkan kesalahan data. Berikut ini saya jelaskan sedikit tentang gangguan yang mungkin terjadi pada jaringan komputer.

Atenuasi (ATTENUATION)

Kekuatan sinyal berkurang atau melemah bila jaraknya terlalu jauh melalui media transmisi, baik dengan menggunakan media transmisi guide seperti kabel, atau media transmisi unguide seperti gelombang(WIFI). Atenuasi biasa terjadi pada sinyal analog, karena atenuasi berubah-ubah sebagai fungsi frekuensi, sinyal yang diterima menjadi menyimpang dan mengurangi tingkat kejelasan.

Cara menanggulangi dari gangguan ini adalah diperlukan sebuah alat penguat sinyal seperti repeater atau ampllifier

Delai distorsi (Delay distorsions)

Gangguan ini biasanya terjadi pada transmisi data dengan menggunakan media transmisi guide seperti kabel. Gangguan ini sangat kritis terjadi di data digital, bila suatu rangkaian bit sedang ditransmisikan, baik dengan menggunakan signal analog/digital, bisa mengakibatkan posisi bit melenceng ke bit yang lain.Gangguan ini terjadi akibat kecepatan sinyal yang melalui medium berbeda-beda sehingga tiba pada penerima dengan waktu yang berbeda.

Noise / Derau

Gangguan ini terjadi karena adanya sinyal-sinyal yang bercampur(distorsi) yang tidak diinginkan. Noise dibagi lagi menjadi 4 kategori :

Thermal Noise

Thermal noise terjadi karena agitasi elektron dalam suatu konduktor, agitasi elektron selalu muncul di semua perangkat elektronik dan media transmisi yang diakibatkan temperatur. Thermal noise juga kadang disebut white noise. Gangguan transmisi ini tidak dapat dihindari sampai sekarang karena sebagai batasan kemampuan kerja sistem komunikasi.

Intermodulation Noise

Disebabkan karena sinyal-sinyal pada frekuensi-frekuensi yang berbeda tersebar pada medium transmisi yang sama sehingga menghasilkan sinyal-sinyal pada suatu frekuensi yang merupakan penjumlahan atau pengalian daru dua frekuensi asalnya. Hal ini timbul karena ketidaklinearan dari transmitter dan receiver.

CrossTalk

Gangguan ini terjadi karena sambungan yang kurang baik atau kabel elekrik yang berdekatan dan dapat pula dari gelombang microwave. Misalnya mungkin anda pernah menerima telpon dari teman anda namun beberapa detik ada suara orang lain terdengar.

Impulse Noise

Impulse Noise terdiri dari pulsa-pulsa tak beraturan atau spike-spike noise dengan durasi pendek dan dengan amplitudo yang relatif tinggi. Gangguan ini biasa terjadi karena kilat atau petir dan mungkin kesalahan dalam sistem komunikasi. Noise ini merupakan sumber utama kesalahan dalam komunikasi data digital dan hanya merupakan gangguan kecil bagi data analog.

Semoga artikel ini bermanfaat,


Referensi

• Grant, August E. & Meadows, Jennifer H. (2008). Communication Technology Update and Fundamental. (ed. 06). Boston: Focal Press. Page 46.

• Straubhaar, Joseph & LaRose, Robert. (2004). Media Now: Communications Media in the Information Age. Belmont, CA: Wadsworth. Page 30-63.

• http://id.wikipedia.org/wiki/Media_transmisi

Perbedaan GSM Dan CDMA

GSM ( Global System For Mobile Communication ) adalah standar komunikasi bergerak paling populer di dunia.

Di dunia GSM mempunyai frekuensi 850/900/1800/1900 MHz dengan nama Personal Communication Network.

Gsm juga menyediakan layanan untuk mengirimkan data dengan kecepatan tinggi,menggunakan teknologi Circuit Speet Data ( CSD ),High Speet Circuit Switch Data ( HSCSD ),General Pocket Radio Service ( GPRS ),dan Enhanced Data rate for GSG Evolution (EDGE ).

GSM lebih banyak di gunakan di eropa.CDMA terutama CDMA 2000 1X merupakan generasi ketiga 3G.

CDMA ( Code Division Multiple Acces ) menggunakan teknik penyebaran spectrum.Berbeda dengan metode Global System for Mobile Communication ( GSM ) yang menggunakan Time Division Multiplexing ( TDM ),CDMA tidak memberikan penanda pada frekuensi khusus pada setiap pengguna.

Setiap chanel menggunakan spectrum yang tersedia secara penuh.

Teknologi Monitor : Dulu, Kini dan Masa Depan

Monitor atau yang juga disebut sebagai “computer display” merupakan komponen output yang digunakan untuk menampilkan teks atau gambar ke layar sehingga dapat dinikmati oleh pemakai.

Sejarah Monitor :
Pada generasi awal komputer, belum menggunakan monitor khusus seperti sekarang ini. Komputer waktu itu terhubung dengan TV keluarga sebagai layar penampil dari pengolahan data yang dilakukannya. Yang cukup menjadi masalah adlaah bahwa resolusi monitor TV saat itu hanya mampu menampilkan 40 karakter secara horisontal pada layar.

Monitor khusus untuk komputer dikeluarkan oleh IBM PC, yang pada awalnya memiliki resolusi 80 X 25 dengan kemampuan warna “green monochrome”. Monitor ini sudah mampu menampilkan hasil yang lebih terang, jelas dan lebih stabil.

Pada generasi berikutnya muncul mono graphics (MGA/MDA) yang memiliki 720x350. Selanjutnya di awal tahun 1980-an muncul jenis monitor CGA dengan range resolusi dari 160x200 sampai 640x200 dan kemampuan warna antara 2 sampai 16 warna.

Monitor EGA muncul dengan resolusi yang lebih bagus yaitu 640x350. Monitor jenis ini cukup stabil sampai berikutnya munculnya generasi komputer Windows.

Semua jenis monitor ini menggunakan digital video - TTL signals dengan discrete number yang spesifik untuk mengatur warna dan intensitas cahaya. Antara video adapter dan monitor memiliki 2, 4, 16, atau 64 warna tergantung standard grafik yang dimiliki.

Selanjutnya dengan diperkenalkannya standard monitor VGA, tampilan grafis dari sebuah Personal Computer menjadi nyata. VGA dan generasi-generasi yang berhasil sesudahnya seperti PGA, XGA, atau SVGA merupakan standard analog video dengan sinyal R (Red), G (Green) dan B (Blue) dengan continuous voltage dan continuous range pada pewarnaan. Secara prinsip analog monitor memungkinkan penggunaan full color dengan intensitas yang tinggi.

Generasi monitor terbaru adalah teknologi LCD yang tidak lagi menggunakan tabung elektron CRT tetapi menggunakan sejenis kristal liquid yang dapat berpendar. Teknologi ini menghasilkan monitor yang dikenal dengan nama Flat Panel Display dengan layar berbentuk pipih, dan kemampuan resolusi yang tinggi.

Berbagai Jenis Monitor :
Dengan perkembangannya yang sangat pesat, saat ini terdapat tiga jenis teknologi monitor. Ketiga golongan teknologi tersebut adalah CRT (Cathode Ray Tube), Liquid Crystal Display (LCD) dan Plasma gas.

a. Cathode Ray Tube
Pada monitor CRT, layar penampil yang digunakan berupa tabung sinar katoda. Teknologi ini memunculkan tampilan pada monitor dengan cara memancarkan sinar elektron ke suatu titik di layar. Sinar tersebut akan diperkuat untuk menampilkan sisi terang dan diperlemah untuk sisi gelap.

Teknologi CRT merupakan teknologi termurah dibanding dengan kedua teknologi yang lain. Meski demikian resolusi yang dihasilkan sudah cukup baik untuk berbagai keperluan. Hanya saja energi listrik yang dibutuhkan cukup besar dan memiliki radiasi elektromagnetik yang cukup kuat.


b. Liquid Crystal Display
Monitor LCD tidak lagi menggunakan tabung elektron tetapi menggunakan sejenis kristal liquid yang dapat berpendar. Teknologi ini menghasilkan monitor yang dikenal dengan nama Flat Panel Display dengan layar berbentuk pipih, dan kemampuan resolusi yang lebih tinggi dibandingkan dengan CRT. Karena bentuknya yang pipih, maka monitor jenis flat tersebut menggunakan energi yang kecil dan banyak digunakan pada komputer-komputer portabel.


Kelebihan yang lain dari monitor LCD adalah adanya brightness ratio yang telah menyentuh angka 350 : 1. Brigtness ratio merupakan perbandingan antara tampilan yang paling gelap dengan tampilan yang paling terang.

Liquid Crystal Display menggunakan kristal liquid yang dapat berpendar. Kristal cair merupakan molekul organik kental yang mengalir seperti cairan, tetapi memiliki struktur spasial seperti kristal. (ditemukan pakar Botani Austria – Rjeinitzer) tahun 1888. Dengan menyorotkan sinar melalui kristal cair, intensitas sinar yang keluar dapat dikendalikan secara elektrik sehingga dapat membentuk panel-panel datar.

Lapisan-lapisan dalam sebuah LCD:

    * Polaroid belakang
    * Elektroda belakang
    * Plat kaca belakang
    * Kristal Cair
    * Plat kaca depan
    * Elektroda depan
    * Polaroid depan

Elektroda dalam lapisan tersebut berfungsi untuk menciptakan medan listrik pada kristal cair, sedangkan polaroid digunakan untuk menciptakan suatu polarisasi.

Dari sisi harga, monitor LCD memang jauh lebih mahal jika dibandingkan dengan monitor CRT. Dan beberapa kelemahan yang masih dimilikinya seperti kurang mampu digunakan untuk bekerja dalam berbagai resolusi, seperti misalnya monitor dengan resolusi 1024 X 768 akan terkesan agak buram jika dipekerjakan pada resolusi 640 X 420. Tatapi akhir-akhir ini kelemahan tersbut sudah mulai di atasi dengan teknik anti aliasing.

c. Plasma Gas
Monitor jenis ini menggabungkan teknologi CRT dengan LCD. Dengan teknologi yang dihasilkan, mampu membuat layar dengan ketipisan menyerupai LCD dan sudut pandang yang dapat selebar CRT.

Plasma gas juga menggunakan fosfor seperti halnya pada teknologi CRT, tetapi layar pada plasma gas dapat perpendar tanpa adanya bantuan cahaya di belakang layar. Hal itu akan membuat energi yang diserap tidak sebesar monitor CRT. Kontras warna yang dihasilkan pun lebih baik dari LCD. Teknologi plasma gas ini sering bisa kita jumpai pada saat pertunjukan-pertunjukan musik atau pertandingan-pertandingan olahraga yang spektakuler. Di sana terdapat layar monitor raksasa yang dipasang pada sudut-sudut arena tertentu. Itulah monitor yang menggunakan teknologi plasma gas.